mesh is now partially serializable

This commit is contained in:
Anselme 2017-09-05 11:39:06 +02:00
parent 82130abc9b
commit 0f0ff32f16
5 changed files with 181 additions and 353 deletions

View File

@ -82,7 +82,7 @@ void Chunk::generate(glm::vec3 pos)
}
delete[](top);
for(int id : m_indiceList)
mesh->indices.push_back(m_vertexHashTable[id]);
mesh->m_indices.push_back(m_vertexHashTable[id]);
m_indiceList.clear();
delete[] m_vertexHashTable;
}
@ -197,11 +197,11 @@ glm::vec3 Chunk::createInterpolatedVertex(glm::vec3 p1, glm::vec3 p2, float valp
p = p1 * (1-mu) + p2 * mu;
// store vertice id in the hash table
m_vertexHashTable[hash] = mesh->positions3D.size();
m_vertexHashTable[hash] = mesh->m_positions3D.size();
// vertex creation from position p (estimated position of the surface)
mesh->positions3D.push_back(p);
mesh->normals.push_back(m_generator->grad(m_position + p));
mesh->m_positions3D.push_back(p);
mesh->m_normals.push_back(m_generator->grad(m_position + p));
}
// constants :

View File

@ -39,10 +39,10 @@ void ForwardModule::renderGL(Camera* myCamera, Scene* scene)
for(GeometryNode *node : p.geometry)
{
shader->bindUnsignedInteger(shader->getLocation("object_identifier"), id);
if(node->mesh->instances_offsets.empty())
if(node->mesh->m_instances_offsets.empty())
++id;
else
id += node->mesh->instances_offsets.size();
id += node->mesh->m_instances_offsets.size();
// compute matrix attributes
glm::mat4 modelViewMatrix = myCamera->getViewMatrix() * node->modelMatrix;
glm::mat4 mvp = myCamera->getProjectionMatrix() * modelViewMatrix;

View File

@ -6,6 +6,8 @@
#include "material.h"
#include "buffer.h"
INIT_SERIALIZABLE(Mesh)
const char* const Mesh::flagStr[Mesh::NB_FLAGS] =
{
"INDEXED",
@ -34,8 +36,8 @@ const char* const Mesh::flagStr[Mesh::NB_FLAGS] =
"BUMP_MAP"
};
Mesh::Mesh(const std::string &name) :
m_name(name),
Mesh::Mesh() :
m_name("mesh"),
material(NULL),
isDoubleSided(false),
isBillboard(false),
@ -49,6 +51,12 @@ Mesh::Mesh(const std::string &name) :
clearBuffers();
}
Mesh::Mesh(const std::string &name) :
Mesh()
{
m_name = name;
}
Mesh::~Mesh()
{
destroyGL();
@ -73,18 +81,18 @@ unsigned int Mesh::updateFlags()
{
m_flags = 0;
if(!indices.empty())
if(!m_indices.empty())
m_flags |= 1 << MESH_INDEXED;
if(!texCoords.empty())
if(!m_texCoords.empty())
m_flags |= 1 << MESH_TEXTURABLE;
if(!instances_offsets.empty())
if(!m_instances_offsets.empty())
m_flags |= 1 << MESH_INSTANCED;
if(!positions3D.empty())
if(!m_positions3D.empty())
{
m_flags |= 1 << MESH_3D;
if(!tangents.empty())
if(!m_tangents.empty())
m_flags |= 1 << MESH_TANGENT_SPACE;
if(isDoubleSided)
m_flags |= 1 << MESH_DOUBLE_SIDED;
@ -111,31 +119,31 @@ void Mesh::initGL()
glBindVertexArray(vao);
// init positions VBO
if(!positions3D.empty())
if(!m_positions3D.empty())
{
auto posBuffer = new TBuffer<glm::vec3>(positions3D, Buffer::VBO);
auto posBuffer = new TBuffer<glm::vec3>(m_positions3D, Buffer::VBO);
posBuffer->setVertexAttrib(0, 3);
addBuffer(posBuffer, POSITION3D_BUFFER);
// init normals vbo
if(!normals.empty())
if(!m_normals.empty())
{
auto normalsBuffer = new TBuffer<glm::vec3>(normals, Buffer::VBO);
auto normalsBuffer = new TBuffer<glm::vec3>(m_normals, Buffer::VBO);
normalsBuffer->setVertexAttrib(1, 3);
addBuffer(normalsBuffer, NORMAL_BUFFER);
}
// init tangents vbo
if(!tangents.empty())
if(!m_tangents.empty())
{
auto tangentsBuffer = new TBuffer<Tangents>(tangents, Buffer::VBO);
auto tangentsBuffer = new TBuffer<Tangents>(m_tangents, Buffer::VBO);
tangentsBuffer->setVertexAttrib(3, 3, 0);
tangentsBuffer->setVertexAttrib(4, 3, sizeof(glm::vec3));
addBuffer(tangentsBuffer, TANGENT_BUFFER);
}
}
else if(!positions2D.empty())
else if(!m_positions2D.empty())
{
auto posBuffer = new TBuffer<glm::vec2>(positions2D, Buffer::VBO);
auto posBuffer = new TBuffer<glm::vec2>(m_positions2D, Buffer::VBO);
posBuffer->setVertexAttrib(0, 2);
addBuffer(posBuffer, POSITION2D_BUFFER);
}
@ -145,25 +153,25 @@ void Mesh::initGL()
return;
}
// init texCoords vbo
if(!texCoords.empty())
if(!m_texCoords.empty())
{
auto texCoordBuffer = new TBuffer<glm::vec2>(texCoords, Buffer::VBO);
auto texCoordBuffer = new TBuffer<glm::vec2>(m_texCoords, Buffer::VBO);
texCoordBuffer->setVertexAttrib(2, 2);
addBuffer(texCoordBuffer, TEXCOORD_BUFFER);
}
// init instances vbo
if(!instances_offsets.empty())
if(!m_instances_offsets.empty())
{
auto instancesBuffer = new TBuffer<glm::vec3>(instances_offsets, Buffer::VBO);
auto instancesBuffer = new TBuffer<glm::vec3>(m_instances_offsets, Buffer::VBO);
instancesBuffer->setVertexAttrib(5, 3, 0, 1);
addBuffer(instancesBuffer, INSTANCE_BUFFER);
}
// init EBO
if(!indices.empty())
if(!m_indices.empty())
{
auto indicesBuffer = new TBuffer<GLuint>(indices, Buffer::EBO);
auto indicesBuffer = new TBuffer<GLuint>(m_indices, Buffer::EBO);
addBuffer(indicesBuffer, INDICES_BUFFER);
}
@ -183,12 +191,12 @@ void Mesh::draw(Shader* shader)
material->bindAttributes(shader);
glBindVertexArray(vao);
if(indices.empty())
if(m_indices.empty())
{
int size = positions3D.empty() ? positions2D.size() : positions3D.size();
if(!instances_offsets.empty())
int size = m_positions3D.empty() ? m_positions2D.size() : m_positions3D.size();
if(!m_instances_offsets.empty())
{
glDrawArraysInstanced(primitive_type, 0, size, instances_offsets.size());
glDrawArraysInstanced(primitive_type, 0, size, m_instances_offsets.size());
}
else
{
@ -199,13 +207,13 @@ void Mesh::draw(Shader* shader)
{
Buffer *b = buffers[buffersId[INDICES_BUFFER]];
b->bind();
if(!instances_offsets.empty())
if(!m_instances_offsets.empty())
{
glDrawElementsInstanced(primitive_type, indices.size(), GL_UNSIGNED_INT, NULL, instances_offsets.size());
glDrawElementsInstanced(primitive_type, m_indices.size(), GL_UNSIGNED_INT, NULL, m_instances_offsets.size());
}
else
{
glDrawElements(primitive_type, indices.size(), GL_UNSIGNED_INT, NULL);
glDrawElements(primitive_type, m_indices.size(), GL_UNSIGNED_INT, NULL);
}
b->unbind();
}
@ -227,13 +235,13 @@ void Mesh::destroyGL()
void Mesh::clearData()
{
positions3D.clear();
normals.clear();
tangents.clear();
positions2D.clear();
texCoords.clear();
instances_offsets.clear();
indices.clear();
m_positions3D.clear();
m_normals.clear();
m_tangents.clear();
m_positions2D.clear();
m_texCoords.clear();
m_instances_offsets.clear();
m_indices.clear();
}
unsigned int Mesh::getFlags()
@ -309,27 +317,27 @@ struct VertexComparator
bool operator() (const int& vertId1, const int& vertId2) const
{
if(mesh->positions3D[vertId1].x != mesh->positions3D[vertId2].x)
return (mesh->positions3D[vertId1].x < mesh->positions3D[vertId2].x);
if(mesh->positions3D[vertId1].y != mesh->positions3D[vertId2].y)
return (mesh->positions3D[vertId1].y < mesh->positions3D[vertId2].y);
if(mesh->positions3D[vertId1].z != mesh->positions3D[vertId2].z)
return (mesh->positions3D[vertId1].z < mesh->positions3D[vertId2].z);
if(!mesh->texCoords.empty())
if(mesh->m_positions3D[vertId1].x != mesh->m_positions3D[vertId2].x)
return (mesh->m_positions3D[vertId1].x < mesh->m_positions3D[vertId2].x);
if(mesh->m_positions3D[vertId1].y != mesh->m_positions3D[vertId2].y)
return (mesh->m_positions3D[vertId1].y < mesh->m_positions3D[vertId2].y);
if(mesh->m_positions3D[vertId1].z != mesh->m_positions3D[vertId2].z)
return (mesh->m_positions3D[vertId1].z < mesh->m_positions3D[vertId2].z);
if(!mesh->m_texCoords.empty())
{
if(mesh->texCoords[vertId1].x - floor(mesh->texCoords[vertId1].x) != mesh->texCoords[vertId2].x - floor(mesh->texCoords[vertId2].x))
return (mesh->texCoords[vertId1].x < mesh->texCoords[vertId2].x);
if(mesh->texCoords[vertId1].y - floor(mesh->texCoords[vertId1].y) != mesh->texCoords[vertId2].y - floor(mesh->texCoords[vertId2].y))
return (mesh->texCoords[vertId1].y < mesh->texCoords[vertId2].y);
if(mesh->m_texCoords[vertId1].x - floor(mesh->m_texCoords[vertId1].x) != mesh->m_texCoords[vertId2].x - floor(mesh->m_texCoords[vertId2].x))
return (mesh->m_texCoords[vertId1].x < mesh->m_texCoords[vertId2].x);
if(mesh->m_texCoords[vertId1].y - floor(mesh->m_texCoords[vertId1].y) != mesh->m_texCoords[vertId2].y - floor(mesh->m_texCoords[vertId2].y))
return (mesh->m_texCoords[vertId1].y < mesh->m_texCoords[vertId2].y);
}
if(!mesh->normals.empty())
if(!mesh->m_normals.empty())
{
if(mesh->normals[vertId1].x != mesh->normals[vertId2].x)
return (mesh->normals[vertId1].x < mesh->normals[vertId2].x);
if(mesh->normals[vertId1].y != mesh->normals[vertId2].y)
return (mesh->normals[vertId1].y < mesh->normals[vertId2].y);
if(mesh->normals[vertId1].z != mesh->normals[vertId2].z)
return (mesh->normals[vertId1].z < mesh->normals[vertId2].z);
if(mesh->m_normals[vertId1].x != mesh->m_normals[vertId2].x)
return (mesh->m_normals[vertId1].x < mesh->m_normals[vertId2].x);
if(mesh->m_normals[vertId1].y != mesh->m_normals[vertId2].y)
return (mesh->m_normals[vertId1].y < mesh->m_normals[vertId2].y);
if(mesh->m_normals[vertId1].z != mesh->m_normals[vertId2].z)
return (mesh->m_normals[vertId1].z < mesh->m_normals[vertId2].z);
}
return false;
}
@ -339,29 +347,29 @@ Mesh* VertexComparator::mesh = NULL;
void Mesh::mergeVertices()
{
if(positions3D.empty())
if(m_positions3D.empty())
return;
bool *deleted = new bool[positions3D.size()];
int *offsets = new int[positions3D.size()];
bool *deleted = new bool[m_positions3D.size()];
int *offsets = new int[m_positions3D.size()];
std::set<int, VertexComparator> vertexSet;
VertexComparator::setMesh(this);
for(std::size_t i=0; i<indices.size(); ++i)
for(std::size_t i=0; i<m_indices.size(); ++i)
{
std::pair<std::set<int,VertexComparator>::iterator, bool> ret = vertexSet.insert(indices[i]);
std::pair<std::set<int,VertexComparator>::iterator, bool> ret = vertexSet.insert(m_indices[i]);
std::set<int,VertexComparator>::iterator it = ret.first;
bool success = ret.second;
deleted[indices[i]] = !success && *it != int(indices[i]);
if(deleted[indices[i]])
deleted[m_indices[i]] = !success && *it != int(m_indices[i]);
if(deleted[m_indices[i]])
{
if(!tangents.empty())
tangents[*it].tangent += tangents[indices[i]].tangent;
indices[i] = *it;
if(!m_tangents.empty())
m_tangents[*it].tangent += m_tangents[m_indices[i]].tangent;
m_indices[i] = *it;
}
}
int offset = 0;
int pos = 0;
for(std::size_t i=0; i<positions3D.size(); ++i)
for(std::size_t i=0; i<m_positions3D.size(); ++i)
{
if(deleted[i])
++offset;
@ -370,86 +378,86 @@ void Mesh::mergeVertices()
offsets[i] = offset;
if(offset != 0)
{
positions3D[pos] = positions3D[i];
if(!texCoords.empty())
texCoords[pos] = texCoords[i];
if(!normals.empty())
normals[pos] = normals[i];
if(!tangents.empty())
tangents[pos] = tangents[i];
m_positions3D[pos] = m_positions3D[i];
if(!m_texCoords.empty())
m_texCoords[pos] = m_texCoords[i];
if(!m_normals.empty())
m_normals[pos] = m_normals[i];
if(!m_tangents.empty())
m_tangents[pos] = m_tangents[i];
}
++pos;
}
}
for(std::size_t i=0; i<indices.size(); ++i)
indices[i] -= offsets[indices[i]];
for(std::size_t i=0; i<m_indices.size(); ++i)
m_indices[i] -= offsets[m_indices[i]];
positions3D.resize(positions3D.size()-offset);
if(!texCoords.empty())
texCoords.resize(texCoords.size()-offset);
if(!normals.empty())
normals.resize(normals.size()-offset);
if(!tangents.empty())
tangents.resize(tangents.size()-offset);
for(int i=0; i<int(tangents.size()); ++i)
m_positions3D.resize(m_positions3D.size()-offset);
if(!m_texCoords.empty())
m_texCoords.resize(m_texCoords.size()-offset);
if(!m_normals.empty())
m_normals.resize(m_normals.size()-offset);
if(!m_tangents.empty())
m_tangents.resize(m_tangents.size()-offset);
for(int i=0; i<int(m_tangents.size()); ++i)
{
glm::vec3 &T = tangents[i].tangent;
const glm::vec3 &N = normals[i];
glm::vec3 &T = m_tangents[i].tangent;
const glm::vec3 &N = m_normals[i];
T = glm::normalize(T);
// re-orthogonalize T with respect to N
T = glm::normalize(T - glm::dot(T, N) * N);
// then retrieve perpendicular vector B with the cross product of T and N
tangents[i].binormal = glm::normalize(glm::cross(T, N));
m_tangents[i].binormal = glm::normalize(glm::cross(T, N));
}
}
void Mesh::computeNeighbors()
{
if(positions3D.empty())
if(m_positions3D.empty())
return;
// TODO : compute adjacency and change primitivetype
}
void Mesh::computeNormals()
{
if(positions3D.empty())
if(m_positions3D.empty())
return;
normals.resize(positions3D.size());
std::memset(normals.data(), 0, normals.size());
for (std::size_t i=0; i < indices.size(); i += 3)
m_normals.resize(m_positions3D.size());
std::memset(m_normals.data(), 0, m_normals.size());
for (std::size_t i=0; i < m_indices.size(); i += 3)
{
int v0 = indices[i];
int v1 = indices[i+1];
int v2 = indices[i+2];
glm::vec3 n = glm::cross(positions3D[v1] - positions3D[v0], positions3D[v2] - positions3D[v0]);
normals[v0] += n;
normals[v1] += n;
normals[v2] += n;
int v0 = m_indices[i];
int v1 = m_indices[i+1];
int v2 = m_indices[i+2];
glm::vec3 n = glm::cross(m_positions3D[v1] - m_positions3D[v0], m_positions3D[v2] - m_positions3D[v0]);
m_normals[v0] += n;
m_normals[v1] += n;
m_normals[v2] += n;
}
for(glm::vec3 &n : normals)
for(glm::vec3 &n : m_normals)
n = glm::normalize(n);
}
void Mesh::computeTangents()
{
if(texCoords.empty())
if(m_texCoords.empty())
return;
tangents = std::vector<Tangents>(positions3D.size());
m_tangents = std::vector<Tangents>(m_positions3D.size());
for (std::size_t j=0; j < indices.size(); j += 3)
for (std::size_t j=0; j < m_indices.size(); j += 3)
{
int vertexId0 = indices[j];
int vertexId1 = indices[j+1];
int vertexId2 = indices[j+2];
int vertexId0 = m_indices[j];
int vertexId1 = m_indices[j+1];
int vertexId2 = m_indices[j+2];
const glm::vec3 &v1 = positions3D[vertexId0];
glm::vec3 edge1 = positions3D[vertexId1] - v1;
glm::vec3 edge2 = positions3D[vertexId2] - v1;
const glm::vec3 &v1 = m_positions3D[vertexId0];
glm::vec3 edge1 = m_positions3D[vertexId1] - v1;
glm::vec3 edge2 = m_positions3D[vertexId2] - v1;
const glm::vec2& w1 = texCoords[vertexId0];
glm::vec2 deltaUV1 = texCoords[vertexId1] - w1;
glm::vec2 deltaUV2 = texCoords[vertexId2] - w1;
const glm::vec2& w1 = m_texCoords[vertexId0];
glm::vec2 deltaUV1 = m_texCoords[vertexId1] - w1;
glm::vec2 deltaUV2 = m_texCoords[vertexId2] - w1;
float f = 1.0f / (deltaUV1.x * deltaUV2.y - deltaUV2.x * deltaUV1.y);
@ -458,19 +466,19 @@ void Mesh::computeTangents()
glm::vec3 binormalDir = deltaUV1.x * edge2 - deltaUV2.x * edge1;
binormalDir = glm::normalize(binormalDir*f);
if(glm::dot(glm::cross(normals[vertexId0], binormalDir), tangentDir) < 0.f)
if(glm::dot(glm::cross(m_normals[vertexId0], binormalDir), tangentDir) < 0.f)
binormalDir = -binormalDir;
tangents[vertexId0] = {tangentDir, binormalDir};
tangents[vertexId1] = {tangentDir, binormalDir};
tangents[vertexId2] = {tangentDir, binormalDir};
m_tangents[vertexId0] = {tangentDir, binormalDir};
m_tangents[vertexId1] = {tangentDir, binormalDir};
m_tangents[vertexId2] = {tangentDir, binormalDir};
}
}
void Mesh::computeBoundingBox(glm::vec3 &min, glm::vec3 &max)
{
min = max = positions3D[0];
for(const glm::vec3 &pos : positions3D)
min = max = m_positions3D[0];
for(const glm::vec3 &pos : m_positions3D)
{
if(pos.x < min.x)
min.x = pos.x;
@ -486,176 +494,3 @@ void Mesh::computeBoundingBox(glm::vec3 &min, glm::vec3 &max)
max.z = pos.z;
}
}
// serialisation methods
struct MeshHeader
{
unsigned int flags;
int nbPositions;
int depth;
int nbInstances_offsets;
int nbIndices;
int nameLength;
};
template<typename T>
bool writeBuffer(const std::vector<T> &vec, std::FILE *file)
{
size_t nbWritten = std::fwrite(vec.data(), sizeof(T), vec.size(), file);
return (nbWritten == vec.size());
}
template<typename T>
bool readBuffer(std::vector<T> &vec, std::FILE *file)
{
size_t nbRead = std::fread(vec.data(), sizeof(T), vec.size(), file);
return (nbRead == vec.size());
}
bool Mesh::serialize(Mesh* mesh, FILE *file)
{
// creating header
MeshHeader header;
header.flags = mesh->getFlags();
if(header.flags & (1 << Mesh::MESH_3D))
header.nbPositions = mesh->positions3D.size();
else
{
header.nbPositions = mesh->positions2D.size();
header.depth = mesh->getDepth();
}
header.nbIndices = mesh->indices.size();
header.nbInstances_offsets = mesh->instances_offsets.size();
header.nameLength = mesh->getName().size();
if(header.nbPositions == 0)
return false;
// writing header
size_t nbWritten;
nbWritten = std::fwrite(&header, sizeof(MeshHeader), 1, file);
if(nbWritten != 1)
return false;
if(header.nameLength != 0)
{
nbWritten = std::fwrite(mesh->getName().data(), header.nameLength, 1, file);
if(nbWritten != 1)
return false;
}
// writing buffers
if(header.flags & (1 << Mesh::MESH_3D))
{
if(!writeBuffer(mesh->positions3D, file))
return false;
if(mesh->normals.size() == 0)
mesh->computeNormals();
if(!writeBuffer(mesh->normals, file))
return false;
if(header.flags & (1 << Mesh::MESH_TANGENT_SPACE))
{
if(!writeBuffer(mesh->tangents, file))
return false;
}
}
else
{
if(!writeBuffer(mesh->positions2D, file))
return false;
}
if(header.nbInstances_offsets)
{
if(!writeBuffer(mesh->instances_offsets, file))
return false;
}
if(header.nbIndices)
{
if(!writeBuffer(mesh->indices, file))
return false;
}
if(header.flags & (1 << Mesh::MESH_TEXTURABLE))
{
if(!writeBuffer(mesh->texCoords, file))
return false;
}
return true;
}
Mesh* Mesh::deserialize(FILE *file)
{
MeshHeader header;
size_t nbRead = std::fread(&header, sizeof(MeshHeader), 1, file);
// deserializing mesh
Mesh *mesh = NULL;
if(nbRead == 1 && header.nbPositions != 0)
mesh = new Mesh();
else
return NULL;
std::string name = "mesh";
if(header.nameLength != 0)
{
name.resize(header.nameLength);
if(!fread(&(name[0]), header.nameLength, 1, file))
{ delete(mesh); return NULL; }
}
mesh->setName(name);
if(header.flags & (1 << Mesh::MESH_3D))
{
mesh->positions3D.reserve(header.nbPositions);
if(!readBuffer(mesh->positions3D, file))
{ delete(mesh); return NULL; }
mesh->normals.reserve(header.nbPositions);
if(!readBuffer(mesh->normals, file))
{ delete(mesh); return NULL; }
if(header.flags & (1 << Mesh::MESH_TANGENT_SPACE))
{
mesh->tangents.reserve(header.nbPositions);
if(!readBuffer(mesh->tangents, file))
{ delete(mesh); return NULL; }
}
}
else
{
mesh->positions2D.reserve(header.nbPositions);
if(!readBuffer(mesh->positions2D, file))
{ delete(mesh); return NULL; }
mesh->setDepth(header.depth);
}
if(header.nbInstances_offsets)
{
mesh->instances_offsets.reserve(header.nbInstances_offsets);
if(!readBuffer(mesh->instances_offsets, file))
{ delete(mesh); return NULL; }
}
if(header.nbIndices)
{
mesh->indices.reserve(header.nbIndices);
if(!readBuffer(mesh->indices, file))
{ delete(mesh); return NULL; }
}
if(header.flags & (1 << Mesh::MESH_TEXTURABLE))
{
mesh->texCoords.reserve(header.nbPositions);
if(!readBuffer(mesh->texCoords, file))
{ delete(mesh); return NULL; }
}
mesh->setIsBillboard(header.flags & (1 << Mesh::MESH_BILLBOARD));
mesh->setIsDoubleSided(header.flags & (1 << Mesh::MESH_DOUBLE_SIDED));
mesh->setIsShadowCaster(header.flags & (1 << Mesh::MESH_SHADOWED));
return mesh;
}

View File

@ -7,11 +7,13 @@
#include <glm/vec3.hpp>
#include <glm/vec2.hpp>
#include <SparrowSerializer/serializable.h>
class Buffer;
class Material;
class Shader;
struct Mesh
struct Mesh : public Serializable
{
public:
@ -63,33 +65,42 @@ public:
/*************************************************************/
// 3D public data
std::vector<glm::vec3> positions3D;
std::vector<glm::vec3> normals;
P_VECTOR_VEC3(m_positions3D)
P_VECTOR_VEC3(m_normals)
typedef struct
{
glm::vec3 tangent;
glm::vec3 binormal;
} Tangents;
std::vector<Tangents> tangents;
std::vector<Tangents> m_tangents;
// 2D public data
std::vector<glm::vec2> positions2D;
P_VECTOR_VEC2(m_positions2D)
// public data common to 2D and 3D
std::vector<glm::vec2> texCoords;
std::vector<glm::vec3> instances_offsets;
std::vector<GLuint> indices;
P_VECTOR_VEC2(m_texCoords)
P_VECTOR_VEC3(m_instances_offsets)
P_VECTOR_UINT(m_indices)
/*************************************************************/
/* MAIN METHODS */
/*************************************************************/
SERIALIZABLE(Mesh,
CAST(m_positions3D),
CAST(m_normals),
CAST(m_positions2D),
CAST(m_texCoords),
CAST(m_instances_offsets),
CAST(m_indices))
/**
* @brief Mesh builds an empty mesh, to be renderable, a mesh must have vertices and a material.
*/
Mesh(const std::string &name = "mesh");
Mesh();
Mesh(const std::string &name);
~Mesh();
void setName(const std::string &name) { m_name = name; }
@ -122,9 +133,9 @@ public:
// add vertex
void addVertex(float x, float y, float z) {addVertex(glm::vec3(x, y, z));}
void addVertex(const glm::vec3 &position) {positions3D.push_back(position);}
void addVertex(const glm::vec3 &position) {m_positions3D.push_back(position);}
void addVertex(float x, float y) {addVertex(glm::vec2(x, y));}
void addVertex(const glm::vec2 &position) {positions2D.push_back(position);}
void addVertex(const glm::vec2 &position) {m_positions2D.push_back(position);}
void addVertex(const glm::vec3 &position, const glm::vec2 &texCoord) {addVertex(position); addTexCoord(texCoord);}
void addVertex(const glm::vec2 &position, const glm::vec2 &texCoord) {addVertex(position); addTexCoord(texCoord);}
void addVertex(const glm::vec3 &position, const glm::vec3 &normal) {addVertex(position); addNormal(normal);}
@ -134,8 +145,8 @@ public:
void addRectangle2D(float x, float y, float width, float height, bool indexed = false) {addRectangle2D(glm::vec2(x, y), glm::vec2(width, height), indexed);}
// add indices
void addTriangle(int i1, int i2, int i3) {indices.push_back(i1), indices.push_back(i2), indices.push_back(i3);}
void addLine(int i1, int i2) {indices.push_back(i1), indices.push_back(i2);}
void addTriangle(int i1, int i2, int i3) {m_indices.push_back(i1), m_indices.push_back(i2), m_indices.push_back(i3);}
void addLine(int i1, int i2) {m_indices.push_back(i1), m_indices.push_back(i2);}
// Material accessers
void setMaterial(Material* mat) {material = mat;}
@ -143,9 +154,9 @@ public:
// other accessers
void addNormal(float x, float y, float z) {addNormal(glm::vec3(x, y, z));}
void addNormal(const glm::vec3 &normal) {normals.push_back(normal);}
void addNormal(const glm::vec3 &normal) {m_normals.push_back(normal);}
void addTexCoord(float u, float v) {addTexCoord(glm::vec2(u, v));}
void addTexCoord(const glm::vec2 &texCoord) {texCoords.push_back(texCoord);}
void addTexCoord(const glm::vec2 &texCoord) {m_texCoords.push_back(texCoord);}
/*************************************************************/
/* 2D MESH PROPERTIES */
@ -196,43 +207,25 @@ public:
void mergeVertices();
/**
* @brief computeNormals computes adjacency for a triangle mesh, the mesh type changes to GL_TRIANGLES_ADJACENCY
* @brief computeNeighbors computes adjacency for a triangle mesh, the mesh type changes to GL_TRIANGLES_ADJACENCY
*/
void computeNeighbors();
/**
* compute normals from an indexed mesh (positions + indices)
* @brief computeNormals computes normals from an indexed mesh (positions + indices)
*/
void computeNormals();
/**
* compute tangent space from a textured indexed mesh (positions + normals + texcoords + indices)
* @brief computeTangents computes tangent space from a textured indexed mesh (positions + normals + texcoords + indices)
*/
void computeTangents();
/**
* compute the bounding box of the mesh based on the 3D positions
* @brief computeBoundingBox computes the bounding box of the mesh based on the 3D positions
*/
void computeBoundingBox(glm::vec3 &min, glm::vec3 &max);
/*************************************************************/
/* SERIALISATION */
/*************************************************************/
/**
* @brief serializeMesh can be used to save a mesh
* @return true if the mesh has succesfully been saved
*/
static bool serialize(Mesh* mesh, FILE *file);
bool serialize(FILE *file) { return serialize(this, file); }
/**
* @brief deserializeMesh can be used to load a mesh
* @return the loaded mesh of NULL if a reading error has occured
*/
static Mesh* deserialize(FILE *file);
/*************************************************************/
/* ADVANCED CUSTOMISATION */
/*************************************************************/
@ -253,19 +246,19 @@ public:
unsigned int updateFlags();
protected:
std::string m_name;
std::string m_name; // yup
Material* material;
bool isDoubleSided;
bool isBillboard;
bool isWireframe;
bool isShadowCaster;
float depth;
unsigned int m_flags;
Material* material; // nop
bool isDoubleSided; // yup
bool isBillboard; // yup
bool isWireframe; // yup
bool isShadowCaster; // yup
float depth; // yup
unsigned int m_flags; // nop GL
GLenum primitive_type;
GLenum primitive_type; // yup
std::vector<Buffer*> buffers;
std::vector<Buffer*> buffers; // nop GL
enum {
// required buffer
@ -286,12 +279,12 @@ protected:
NB_BUFFERS
};
int buffersId[NB_BUFFERS];
int buffersId[NB_BUFFERS]; // nop GL
void addBuffer(Buffer *b, int bufferType);
void clearBuffers();
GLuint vao;
GLuint vao; // nop GL
};
#endif // MESH_H

View File

@ -97,11 +97,11 @@ int MeshGenerator::getEdge(int a, int b)
vid = current->vertex;
else if(current->next == NULL)
{
vid = m_mesh->positions3D.size();
vid = m_mesh->m_positions3D.size();
// creating subdivision vertex
// u/v sphériques, cohérents sur toute la sphère sauf des artefacts au niveau des u==0
glm::vec3 pos = glm::normalize((m_mesh->positions3D[a] + m_mesh->positions3D[b]) / 2.f);
glm::vec3 pos = glm::normalize((m_mesh->m_positions3D[a] + m_mesh->m_positions3D[b]) / 2.f);
float newU = (pos.x < 0 ? 1.5f : 1.f) + atan(pos.z/pos.x)/(2*M_PI);
float newV = acos(pos.y)/M_PI;
// alternative, u/v moyennés :
@ -126,25 +126,25 @@ int MeshGenerator::getEdge(int a, int b)
void MeshGenerator::subdivide()
{
edges = new Edge[m_mesh->positions3D.size()-1];
int nb_triangles = m_mesh->indices.size()/3;
edges = new Edge[m_mesh->m_positions3D.size()-1];
int nb_triangles = m_mesh->m_indices.size()/3;
for(int j=0; j<nb_triangles; j++)
{
int vid[3];
for(int k=0; k<3; k++)
{
int idA = m_mesh->indices[j*3 + k];
int idB = m_mesh->indices[j*3 + (k+1)%3];
int idA = m_mesh->m_indices[j*3 + k];
int idB = m_mesh->m_indices[j*3 + (k+1)%3];
int a = idA < idB ? idA : idB;
int b = idA > idB ? idA : idB;
vid[k] = getEdge(a, b);
}
for(int k=0; k<3; k++)
m_mesh->addTriangle(m_mesh->indices[j*3 + k], vid[k], vid[(k+2)%3]);
m_mesh->addTriangle(m_mesh->m_indices[j*3 + k], vid[k], vid[(k+2)%3]);
m_mesh->addTriangle(vid[0], vid[1], vid[2]);
}
delete[](edges);
m_mesh->indices.erase(m_mesh->indices.begin(), m_mesh->indices.begin()+nb_triangles*3);
m_mesh->m_indices.erase(m_mesh->m_indices.begin(), m_mesh->m_indices.begin()+nb_triangles*3);
}
int MeshGenerator::getVertexId(int i, int j, int height)