#include "meshbuilder.h" #include #include void MeshBuilder::addPosition(float x, float y, float z) { addPosition(glm::vec3(x, y, z)); } void MeshBuilder::addPosition(const glm::vec3 &position) { positions.push_back(position); } void MeshBuilder::addNormal(float x, float y, float z) { addNormal(glm::vec3(x, y, z)); } void MeshBuilder::addNormal(const glm::vec3 &normal) { normals.push_back(normal); } void MeshBuilder::addTexCoord(float u, float v) { addTexCoord(glm::vec2(u, v)); } void MeshBuilder::addTexCoord(const glm::vec2 &texCoord) { texCoords.push_back(texCoord); } void MeshBuilder::addVertex(const glm::vec3 &position, const glm::vec3 &normal) { addPosition(position); addNormal(normal); } void MeshBuilder::addVertex(const glm::vec3 &position, const glm::vec2 &texCoord) { addPosition(position); addTexCoord(texCoord); } void MeshBuilder::addVertex(const glm::vec3 &position, const glm::vec3 &normal, const glm::vec2 &texCoord) { addVertex(position, normal); addTexCoord(texCoord); } void MeshBuilder::addTriangle(int i1, int i2, int i3) { indiceGroups[currentGroup].indices.push_back(i1); indiceGroups[currentGroup].indices.push_back(i2); indiceGroups[currentGroup].indices.push_back(i3); } void MeshBuilder::addGroup(Material* myMaterial) { Group g; g.material = myMaterial; setCurrentGroup(getNbGroups()); indiceGroups.push_back(g); } void MeshBuilder::setCurrentGroup(int groupId) { currentGroup = groupId; } void MeshBuilder::setCurrentGroupMaterial(Material* myMaterial) { indiceGroups[currentGroup].material = myMaterial; } int MeshBuilder::getNbGroups() { return indiceGroups.size(); } class VertexComparator { public: // c'est crade mais j'ai pas trouvé d'autre moyen pour le moment static MeshBuilder* mesh; static void setMesh(MeshBuilder* m) {VertexComparator::mesh = m;} bool operator() (const int& vertId1, const int& vertId2) const { if(mesh->positions[vertId1].x != mesh->positions[vertId2].x) return (mesh->positions[vertId1].x < mesh->positions[vertId2].x); if(mesh->positions[vertId1].y != mesh->positions[vertId2].y) return (mesh->positions[vertId1].y < mesh->positions[vertId2].y); if(mesh->positions[vertId1].z != mesh->positions[vertId2].z) return (mesh->positions[vertId1].z < mesh->positions[vertId2].z); if(mesh->hasTexCoords()) { if(mesh->texCoords[vertId1].x != mesh->texCoords[vertId2].x) return (mesh->texCoords[vertId1].x < mesh->texCoords[vertId2].x); if(mesh->texCoords[vertId1].y != mesh->texCoords[vertId2].y) return (mesh->texCoords[vertId1].y < mesh->texCoords[vertId2].y); } if(mesh->hasNormals()) { if(mesh->normals[vertId1].x != mesh->normals[vertId2].x) return (mesh->normals[vertId1].x < mesh->normals[vertId2].x); if(mesh->normals[vertId1].y != mesh->normals[vertId2].y) return (mesh->normals[vertId1].y < mesh->normals[vertId2].y); if(mesh->normals[vertId1].z != mesh->normals[vertId2].z) return (mesh->normals[vertId1].z < mesh->normals[vertId2].z); } return false; } }; MeshBuilder* VertexComparator::mesh = NULL; void MeshBuilder::mergeVertices() { std::vector swapped; std::set vertexSet; VertexComparator::setMesh(this); int size = positions.size(); for(Group &g : indiceGroups) for(int i=0; i= positions.size()) g.indices[i] = swapped[size - g.indices[i]]; std::pair::iterator,bool> ret = vertexSet.insert(g.indices[i]); if(!ret.second) // duplicate found { // updating indices references int toDelete = g.indices[i]; swapped.push_back(toDelete); g.indices[i] = *(ret.first); // deleting the duplicate positions[toDelete] = positions.back(); positions.pop_back(); if(hasTexCoords()) { texCoords[toDelete] = texCoords.back(); texCoords.pop_back(); } if(hasNormals()) { normals[toDelete] = normals.back(); normals.pop_back(); } if(hasTangents()) { tangents[toDelete] = tangents.back(); tangents.pop_back(); } } } fprintf(stdout, "found %d vertex duplicates\n", swapped.size()); } void MeshBuilder::computeNormals() { normals.resize(positions.size()); for(const Group &g : indiceGroups) for (int i=0; i < g.indices.size(); i += 3) { int v0 = g.indices[i]; int v1 = g.indices[i+1]; int v2 = g.indices[i+2]; glm::vec3 n = glm::cross(positions[v1] - positions[v0], positions[v2] - positions[v0]); normals[v0] += n; normals[v1] += n; normals[v2] += n; } for(glm::vec3 &n : normals) n = glm::normalize(n); } void MeshBuilder::computeTangents() { if(!hasTexCoords()) return; tangents = std::vector(positions.size()); for(const Group &g : indiceGroups) for (int j=0; j < g.indices.size(); j += 3) { int vertexId0 = g.indices[j]; int vertexId1 = g.indices[j+1]; int vertexId2 = g.indices[j+2]; const glm::vec3 &v1 = positions[vertexId0]; const glm::vec3 &v2 = positions[vertexId1]; const glm::vec3 &v3 = positions[vertexId2]; const glm::vec2& w1 = texCoords[vertexId0]; const glm::vec2& w2 = texCoords[vertexId1]; const glm::vec2& w3 = texCoords[vertexId2]; float x1 = v2.x - v1.x; float x2 = v3.x - v1.x; float y1 = v2.y - v1.y; float y2 = v3.y - v1.y; float z1 = v2.z - v1.z; float z2 = v3.z - v1.z; float s1 = w2.x - w1.x; float s2 = w3.x - w1.x; float t1 = w2.y - w1.y; float t2 = w3.y - w1.y; float r = 1.0f / (s1 * t2 - s2 * t1); glm::vec3 sdir((t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, (t2 * z1 - t1 * z2) * r); glm::vec3 tdir((s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r); Tangents& tan1 = tangents[vertexId0]; Tangents& tan2 = tangents[vertexId1]; Tangents& tan3 = tangents[vertexId2]; tan1.tangent += sdir; tan2.tangent += sdir; tan3.tangent += sdir; tan1.binormal += tdir; tan2.binormal += tdir; tan3.binormal += tdir; } // building tangent matrix /* for (long a = 0; a < vertexCount; a++) { const Vector3D& n = normal[a]; const Vector3D& t = tan1[a]; // Gram-Schmidt orthogonalize tangent[a] = (t - n * Dot(n, t)).Normalize(); // Calculate handedness tangent[a].w = (Dot(Cross(n, t), tan2[a]) < 0.0F) ? -1.0F : 1.0F; }*/ }