SparrowRenderer/shaders/lighting.frag.glsl

194 lines
5.4 KiB
GLSL

// G-BUFFER
// - Position in view space
uniform sampler2DRect positionBuffer;
// - Albedo + Roughness
uniform sampler2DRect albedoBuffer;
// - Normal buffer
uniform sampler2DRect normalBuffer;
// - Emission + Metallic
uniform sampler2DRect emissionBuffer;
// - depth buffer
uniform sampler2DRect depthBuffer;
// LIGHT ATTRIBUTES
#ifdef AMBIENT_LIGHT
uniform samplerCube ambientMap;
uniform samplerCube reflectMap;
uniform sampler2D brdfLUT;
uniform mat3 inverseViewMatrix;
#else
uniform vec3 lightColor;
#endif
#ifdef SHADOWMAP
#ifdef POINT_LIGHT
uniform samplerCube shadowMap;
uniform mat3 inverseViewMatrix;
#else
uniform sampler2DShadow shadowMap;
uniform mat4 viewToLightMatrix;
#endif
#endif
#if defined POINT_LIGHT
uniform vec3 pointLight;
uniform float range;
#elif defined DIRECTIONNAL_LIGHT
uniform vec3 dirLight;
#elif defined SPOT_LIGHT
uniform vec3 pointLight;
uniform float attenuation;
uniform vec3 dirLight;
uniform float cutoff;
#endif
// FRAGMENT POSITIONNING
in vec2 screenPos;
uniform mat4 inverseProjectionMatrix;
// OUTPUT LIGHT
layout(location = 0)out vec4 outColor;
// CONSTANTS
const float PI = 3.14159265359;
const float MAX_REFLECTION_LOD = 4.0;
// FUNCTIONS
#ifdef AMBIENT_LIGHT
vec3 GGX(
in vec3 albedoColor,
in float metallic,
in float roughness,
in vec3 N,
in vec3 V)
{
float NdotV = max(dot(N, V), 0.0);
vec3 R = reflect(-V, N);
vec3 albedo = pow(albedoColor, vec3(2.2));
vec3 F0 = mix(vec3(0.04), albedo, metallic);
// ambient lighting (we now use IBL as the ambient term) (fresnelSchlickRoughness function)
vec3 F = F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - NdotV, 5.0);
vec3 kD = 1.0 - F;
kD *= 1.0 - metallic;
vec3 irradiance = texture(ambientMap, inverseViewMatrix * N).rgb;
vec3 diffuse = irradiance * albedo;
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
vec3 prefilteredColor = textureLod(reflectMap, inverseViewMatrix * R, roughness * MAX_REFLECTION_LOD).rgb;
vec2 brdf2 = texture(brdfLUT, vec2(NdotV, roughness)).rg;
vec3 specular = prefilteredColor * (F * brdf2.x + brdf2.y);
// combining light
return kD * diffuse + specular;
}
#else
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float denom = (NdotH * NdotH * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return a2 / denom;
}
float GeometrySchlickGGX(float cosAlpha, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
return cosAlpha / (cosAlpha * (1.0 - k) + k);
}
vec3 GGX(
in vec3 albedoColor,
in float metallic,
in float roughness,
in vec3 radiance,
in vec3 N,
in vec3 L,
in vec3 H,
in vec3 V)
{
vec3 albedo = pow(albedoColor, vec3(2.2));
vec3 F0 = mix(vec3(0.04), albedo, metallic);
float NdotL = max(dot(N, L), 0.0);
float NdotV = max(dot(N, V), 0.0);
// Cook-Torrance BRDF
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySchlickGGX(NdotV, roughness) * GeometrySchlickGGX(NdotL, roughness);
vec3 F = F0 + (1.0 - F0) * pow(1.0 - max(dot(H, V), 0.0), 5.0);
vec3 nominator = NDF * G * F;
float denominator = 4 * NdotV * NdotL + 0.001; // 0.001 to prevent divide by zero.
vec3 brdf = nominator / denominator;
vec3 kD = 1.0 - F;
kD *= 1.0 - metallic;
return (kD * albedo / PI + brdf) * radiance * NdotL;
}
#endif
// MAIN PROGRAM
void main(void) {
// get fragment information from the G-Buffer
ivec2 texCoord = ivec2(gl_FragCoord.xy);
vec3 normal = texelFetch(normalBuffer, texCoord).xyz;
vec4 albedoTexel = texelFetch(albedoBuffer, texCoord);
vec3 albedo = albedoTexel.rgb;
float roughness = albedoTexel.a;
vec4 emissionTexel = texelFetch(emissionBuffer, texCoord);
vec3 emission = emissionTexel.rgb;
float metallic = emissionTexel.a;
vec4 fragPos = texelFetch(positionBuffer, texCoord);
float depth = texelFetch(depthBuffer, texCoord).r;
// compute shadow
#ifdef SHADOWMAP
#ifdef POINT_LIGHT
float shadow = 1;
#else
vec4 fragInLightSpace = viewToLightMatrix * fragPos;
fragInLightSpace.z = fragInLightSpace.z - 0.002;
float shadow = texture(shadowMap, fragInLightSpace.xyz/fragInLightSpace.w);
#endif
#else
float shadow = 1;
#endif
float att = 1;
#ifdef POINT_LIGHT
vec3 dirLight = pointLight - fragPos.xyz;
//vec4 pointShadowParam = vec4(inverseViewMatrix * dirLight, length(dirLight));
//att = texture(shadowMap, pointShadowParam);
//outColor = vec4(vec3(texture(shadowMap, vec4(inverseViewMatrix * dirLight, length(dirLight)/range))), 1);
//outColor = vec4(vec3(texture(shadowMap, vec3(inverseViewMatrix * dirLight)).r), 1);
//outColor = vec4(vec3(length(dirLight)/range), 1);
//return;
float dist = length(dirLight);
att = clamp(1 - dist/range, 0, 1);
dirLight = normalize(dirLight);
#endif
vec3 viewDir = normalize(-fragPos.xyz);
#ifdef AMBIENT_LIGHT
outColor = vec4(emission + GGX(albedo, metallic, roughness, normal, viewDir), 1);
#else
vec3 halfVec = normalize(viewDir + dirLight);
vec3 light = GGX(albedo, metallic, roughness, lightColor, normal, dirLight, halfVec, viewDir);
outColor = vec4(mix(vec3(0.0), light*shadow, att*att), 1);
#endif
}