SparrowRenderer/forwardmodule.cpp

216 lines
7.0 KiB
C++

#include "forwardmodule.h"
#include "scene.h"
#include "phongentity.h"
#include "mesh.h"
#include "shader.h"
#include "light.h"
#include "glassert.h"
#include "texture.h"
#include <glm/ext.hpp>
const char* const ForwardModule::flagStr[] =
{
"DIFFUSE_TEXTURE",
"AMBIENT_TEXTURE",
"SPECULAR_TEXTURE",
"NORMAL_MAP",
"ALPHA_MASK"
};
void ForwardModule::renderGL(Camera* myCamera, Scene* scene)
{
// bind target
renderTarget->bindFBO();
// render ambient lighting
glAssert(glDepthFunc(GL_LESS));
glAssert(glDisable(GL_BLEND));
lightPass(myCamera, scene, NULL);
// render directionnal lighting and point lighting
glAssert(glDepthFunc(GL_LEQUAL));
glAssert(glEnable(GL_BLEND));
glAssert(glBlendFunc(GL_ONE, GL_ONE));
glAssert(glDepthMask(GL_FALSE));
for(SceneIterator<Light*>* lightIt = scene->getLights(); lightIt->isValid(); lightIt->next())
lightPass(myCamera, scene, lightIt->getItem());
glAssert(glDisable(GL_BLEND));
glAssert(glDepthFunc(GL_LESS));
glAssert(glDepthMask(GL_TRUE));
}
void ForwardModule::lightPass(Camera* myCamera, Scene* scene, Light* light)
{
// loop over all types of geometry
for(int i=0; i<geometryFlagList.size(); ++i)
{
int j;
for(j=0; j<lightFlagList.size(); ++j)
if(lightFlagList[j] == Light::getFlags(light))
break;
Shader* shader = shaders[i*lightFlagList.size() + j];
shader->bind();
// bind light attributes
if(light == NULL)
{
// ambient light
shader->bindVec3(shader->getLocation("lightColor"), glm::vec3(0.1f)); // add attribute, and setter for ambient lighting
}
else
{
switch(light->getType())
{
case Light::DIRECTIONNAL:
shader->bindVec3(shader->getLocation("dirLight"), light->getDir());
shader->bindVec3(shader->getLocation("lightColor"), light->getColor());
if(light->isShadowCaster())
{
light->getShadowMap()->bind(NB_FLAGS); // NB_FLAGS has the value of the first available slot after the phong material texture slots
shader->bindInteger(shader->getLocation("shadowMap"), NB_FLAGS);
}
break;
case Light::POINT:
shader->bindVec3(shader->getLocation("pointLight"), light->getPos());
shader->bindVec3(shader->getLocation("lightColor"), light->getColor());
// TODO add attenuation
break;
case Light::SPOT:
shader->bindVec3(shader->getLocation("lightColor"), light->getColor());
// TODO add cutoff and attenuation
break;
}
}
for(SceneIterator<PhongEntity*>* entityIt = scene->getGeometry();
entityIt->isValid(); entityIt->next())
{
// compute matrix attributes
PhongEntity* entity = entityIt->getItem();
glm::mat4 modelViewMatrix = myCamera->getViewMatrix() * entity->modelMatrix;
glm::mat4 mvp = myCamera->getProjectionMatrix() * modelViewMatrix;
glm::mat4 normalMatrix = glm::transpose(glm::inverse(modelViewMatrix));
if(light != NULL && light->isShadowCaster())
{
glm::mat4 lightMVP = light->getProjectionMatrix() * (light->getViewMatrix() * entity->modelMatrix);
shader->bindMat4(shader->getLocation("lightMVP"), lightMVP);
}
shader->bindMat4(shader->getLocation("viewMatrix"), myCamera->getViewMatrix());
shader->bindMat4(shader->getLocation("modelViewMatrix"), modelViewMatrix);
shader->bindMat3(shader->getLocation("normalMatrix"), glm::mat3(normalMatrix));
shader->bindMat4(shader->getLocation("MVP"), mvp);
// loop over material groups
for(int j=0; j<entity->getMesh()->indiceGroups.size(); ++j)
{
Material* mat = entity->getMesh()->indiceGroups[j].material;
if(mat->getFlags() == geometryFlagList[i])
{
// bind material attributes
mat->bindAttributes(shader);
// draw geometry
entity->drawGroup(j);
}
}
}
}
}
// modern opengl methods
void ForwardModule::setShaderSource(ShaderSource* source)
{
if(shaderSources != NULL)
delete(shaderSources);
shaderSources = source;
}
void ForwardModule::compileShaders(Scene* scene)
{
geometryFlagList.clear();
lightFlagList.clear();
for(Shader* s : shaders)
delete(s);
shaders.clear();
// get material flags
const int nb_geometry_flags = 1 << NB_FLAGS;
bool geometryFlags[nb_geometry_flags];
for(int i=0; i<nb_geometry_flags; ++i)
geometryFlags[i] = false;
for(SceneIterator<PhongEntity*>* entityIt = scene->getGeometry();
entityIt->isValid(); entityIt->next())
{
Mesh* m = entityIt->getItem()->getMesh();
for(Mesh::Group &g : m->indiceGroups)
geometryFlags[g.material->getFlags()] = true;
}
for(int i=0; i<nb_geometry_flags; ++i)
{
if(geometryFlags[i])
geometryFlagList.push_back(i);
}
// get light flags
const int nb_light_flags = 1 << Light::NB_LIGHT_FLAGS;
bool lightFlags[nb_light_flags];
for(int i=0; i<nb_light_flags; ++i)
lightFlags[i] = false;
// ambient light
lightFlags[Light::getFlags(NULL)] = true;
// scene lights
for(SceneIterator<Light*>* lightIt = scene->getLights();
lightIt->isValid(); lightIt->next())
{
Light* l = lightIt->getItem();
lightFlags[Light::getFlags(l)] = true;
}
for(int i=0; i<nb_light_flags; ++i)
{
if(lightFlags[i])
lightFlagList.push_back(i);
}
// shader compilation
for(int i : geometryFlagList)
{
std::vector<const char*> defines;
// set geometry defines
if(i & NORMAL_MAP_FLAG)
defines.push_back(flagStr[NORMAL_MAP]);
if(i & AMBIENT_TEXTURE_FLAG)
defines.push_back(flagStr[AMBIENT_TEXTURE]);
if(i & DIFFUSE_TEXTURE_FLAG)
defines.push_back(flagStr[DIFFUSE_TEXTURE]);
if(i & SPECULAR_TEXTURE_FLAG)
defines.push_back(flagStr[SPECULAR_TEXTURE]);
if(i & ALPHA_MASK_FLAG)
defines.push_back(flagStr[ALPHA_MASK]);
int boundary = defines.size();
for(int j : lightFlagList)
{
while(defines.size() > boundary)
defines.pop_back();
// set light defines
for(int k=0; k<Light::NB_LIGHT_FLAGS; ++k)
{
if(j & (1 << k))
defines.push_back(Light::flagStr[k]);
}
// compilation
shaders.push_back(shaderSources->compile(defines.size(), defines.data()));
}
}
}
void ForwardModule::setRenderTarget(FrameBuffer* target)
{
if(target != NULL)
renderTarget = target;
}