putting complex functions in a separate shader source
This commit is contained in:
parent
8d65284cc0
commit
60db6f4bdb
@ -53,107 +53,8 @@ uniform mat4 inverseProjectionMatrix;
|
||||
|
||||
layout(location = 0)out vec4 outColor;
|
||||
|
||||
// CONSTANTS
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
const float MAX_REFLECTION_LOD = 4.0;
|
||||
|
||||
// FUNCTIONS
|
||||
|
||||
#ifdef AMBIENT_LIGHT
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||
{
|
||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
|
||||
vec3 GGX(
|
||||
in vec3 albedoColor,
|
||||
in float metallic,
|
||||
in float roughness,
|
||||
in vec3 N,
|
||||
in vec3 V)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
vec3 R = reflect(-V, N);
|
||||
vec3 albedo = pow(albedoColor, vec3(2.2));
|
||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04);
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
|
||||
// ambient lighting (we now use IBL as the ambient term) (fresnelSchlickRoughness function)
|
||||
vec3 F = fresnelSchlickRoughness(NdotV, F0, roughness);
|
||||
|
||||
vec3 kS = F;
|
||||
vec3 kD = 1.0 - kS;
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
mat3 viewToWorld = inverseViewMatrix;
|
||||
|
||||
vec3 irradiance = texture(ambientMap, viewToWorld * N).rgb;
|
||||
vec3 diffuse = irradiance * albedo;
|
||||
|
||||
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
|
||||
|
||||
vec3 prefilteredColor = textureLod(reflectMap, viewToWorld * R, roughness * MAX_REFLECTION_LOD).rgb;
|
||||
vec2 brdf2 = texture(brdfLUT, vec2(NdotV, roughness)).rg;
|
||||
vec3 specular = prefilteredColor * (F * brdf2.x + brdf2.y);
|
||||
|
||||
// combining light
|
||||
return kD * diffuse + specular;
|
||||
}
|
||||
#elif !defined UNLIT
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float denom = (NdotH * NdotH * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
return a2 / denom;
|
||||
}
|
||||
|
||||
float GeometrySchlickGGX(float cosAlpha, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
return cosAlpha / (cosAlpha * (1.0 - k) + k);
|
||||
}
|
||||
|
||||
vec3 GGX(
|
||||
in vec3 albedoColor,
|
||||
in float metallic,
|
||||
in float roughness,
|
||||
in vec3 radiance,
|
||||
in vec3 N,
|
||||
in vec3 L,
|
||||
in vec3 H,
|
||||
in vec3 V)
|
||||
{
|
||||
vec3 albedo = pow(albedoColor, vec3(2.2));
|
||||
vec3 F0 = mix(vec3(0.04), albedo, metallic);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
|
||||
// Cook-Torrance BRDF
|
||||
float NDF = DistributionGGX(N, H, roughness);
|
||||
float G = GeometrySchlickGGX(NdotV, roughness) * GeometrySchlickGGX(NdotL, roughness);
|
||||
vec3 F = F0 + (1.0 - F0) * pow(1.0 - clamp(dot(H, V), 0.0, 1.0), 5.0);
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * NdotV * NdotL + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
|
||||
vec3 kD = 1.0 - F;
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
return (kD * albedo / PI + brdf) * radiance * NdotL;
|
||||
}
|
||||
#endif
|
||||
|
||||
// MAIN PROGRAM
|
||||
|
||||
|
||||
void main(void) {
|
||||
// get fragment information from the G-Buffer
|
||||
ivec2 texCoord = ivec2(gl_FragCoord.xy);
|
||||
@ -198,7 +99,8 @@ void main(void) {
|
||||
|
||||
vec3 viewDir = normalize(-fragPos.xyz);
|
||||
#ifdef AMBIENT_LIGHT
|
||||
outColor = vec4(emission + GGX(albedo, metallic, roughness, normal, viewDir), 1);
|
||||
vec3 ambientLight = ambientGGX(albedo, metallic, roughness, normal, viewDir, inverseViewMatrix, ambientMap, reflectMap, brdfLUT);
|
||||
outColor = vec4(emission + ambientLight, 1);
|
||||
#else
|
||||
vec3 halfVec = normalize(viewDir + dirLight);
|
||||
vec3 light = GGX(albedo, metallic, roughness, lightColor, normal, dirLight, halfVec, viewDir);
|
||||
|
99
shaders/utils.glsl
Normal file
99
shaders/utils.glsl
Normal file
@ -0,0 +1,99 @@
|
||||
|
||||
// CONSTANTS
|
||||
|
||||
const float PI = 3.14159265359;
|
||||
const float MAX_REFLECTION_LOD = 4.0;
|
||||
|
||||
// FUNCTIONS
|
||||
|
||||
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
|
||||
{
|
||||
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
|
||||
}
|
||||
|
||||
vec3 ambientGGX(
|
||||
in vec3 albedoColor,
|
||||
in float metallic,
|
||||
in float roughness,
|
||||
in vec3 N,
|
||||
in vec3 V,
|
||||
in mat3 viewToWorld,
|
||||
in samplerCube irradianceMap,
|
||||
in samplerCube radianceMap,
|
||||
in sampler2D lut)
|
||||
{
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
vec3 R = reflect(-V, N);
|
||||
vec3 albedo = pow(albedoColor, vec3(2.2));
|
||||
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
|
||||
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
|
||||
vec3 F0 = vec3(0.04);
|
||||
F0 = mix(F0, albedo, metallic);
|
||||
|
||||
// ambient lighting (we now use IBL as the ambient term) (fresnelSchlickRoughness function)
|
||||
vec3 F = fresnelSchlickRoughness(NdotV, F0, roughness);
|
||||
|
||||
vec3 kS = F;
|
||||
vec3 kD = 1.0 - kS;
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
vec3 irradiance = texture(irradianceMap, viewToWorld * N).rgb;
|
||||
vec3 diffuse = irradiance * albedo;
|
||||
|
||||
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
|
||||
|
||||
vec3 prefilteredColor = textureLod(radianceMap, viewToWorld * R, roughness * MAX_REFLECTION_LOD).rgb;
|
||||
vec2 brdf2 = texture(lut, vec2(NdotV, roughness)).rg;
|
||||
vec3 specular = prefilteredColor * (F * brdf2.x + brdf2.y);
|
||||
|
||||
// combining light
|
||||
return kD * diffuse + specular;
|
||||
}
|
||||
|
||||
float DistributionGGX(vec3 N, vec3 H, float roughness)
|
||||
{
|
||||
float a = roughness*roughness;
|
||||
float a2 = a*a;
|
||||
float NdotH = max(dot(N, H), 0.0);
|
||||
float denom = (NdotH * NdotH * (a2 - 1.0) + 1.0);
|
||||
denom = PI * denom * denom;
|
||||
return a2 / denom;
|
||||
}
|
||||
|
||||
float GeometrySchlickGGX(float cosAlpha, float roughness)
|
||||
{
|
||||
float r = (roughness + 1.0);
|
||||
float k = (r*r) / 8.0;
|
||||
return cosAlpha / (cosAlpha * (1.0 - k) + k);
|
||||
}
|
||||
|
||||
vec3 GGX(
|
||||
in vec3 albedoColor,
|
||||
in float metallic,
|
||||
in float roughness,
|
||||
in vec3 radiance,
|
||||
in vec3 N,
|
||||
in vec3 L,
|
||||
in vec3 H,
|
||||
in vec3 V)
|
||||
{
|
||||
vec3 albedo = pow(albedoColor, vec3(2.2));
|
||||
vec3 F0 = mix(vec3(0.04), albedo, metallic);
|
||||
float NdotL = max(dot(N, L), 0.0);
|
||||
float NdotV = max(dot(N, V), 0.0);
|
||||
|
||||
// Cook-Torrance BRDF
|
||||
float NDF = DistributionGGX(N, H, roughness);
|
||||
float G = GeometrySchlickGGX(NdotV, roughness) * GeometrySchlickGGX(NdotL, roughness);
|
||||
vec3 F = F0 + (1.0 - F0) * pow(1.0 - clamp(dot(H, V), 0.0, 1.0), 5.0);
|
||||
|
||||
vec3 nominator = NDF * G * F;
|
||||
float denominator = 4 * NdotV * NdotL + 0.001; // 0.001 to prevent divide by zero.
|
||||
vec3 brdf = nominator / denominator;
|
||||
|
||||
vec3 kD = 1.0 - F;
|
||||
kD *= 1.0 - metallic;
|
||||
|
||||
return (kD * albedo / PI + brdf) * radiance * NdotL;
|
||||
}
|
||||
|
@ -7,8 +7,22 @@
|
||||
#include "mesh.h"
|
||||
#include "light.h"
|
||||
|
||||
// resource packs
|
||||
#include <resource.h>
|
||||
|
||||
RESOURCE_PACK(shaders)
|
||||
|
||||
std::string ShaderSource::m_utilsSource = "";
|
||||
|
||||
ShaderSource::ShaderSource()
|
||||
{
|
||||
if(m_utilsSource.empty())
|
||||
{
|
||||
Resource::ResourceMap shaderMap;
|
||||
Resource::getResourcePack_shaders(shaderMap);
|
||||
m_utilsSource = shaderMap["shaders/utils.glsl"];
|
||||
}
|
||||
|
||||
for(int i=0; i<NB_TYPES; ++i)
|
||||
sources[i] = NULL;
|
||||
}
|
||||
@ -57,6 +71,8 @@ Shader* ShaderSource::compile(const std::vector<const char*> &defines)
|
||||
header += "\n#define "+std::string(def);
|
||||
|
||||
header += "\n#line 1\n";
|
||||
header += m_utilsSource;
|
||||
header += "\n#line 1\n";
|
||||
|
||||
if(sources[VERTEX] == NULL || sources[FRAGMENT] == NULL)
|
||||
return NULL;
|
||||
|
@ -28,6 +28,8 @@ public:
|
||||
|
||||
private:
|
||||
std::string* sources[NB_TYPES];
|
||||
|
||||
static std::string m_utilsSource;
|
||||
};
|
||||
|
||||
#endif // SHADERSOURCE_H
|
||||
|
@ -11,7 +11,7 @@ TextureBlur::TextureBlur(FrameBuffer* input, int downsampling, int textureId) :
|
||||
horizontal(NULL),
|
||||
vertical(NULL)
|
||||
{
|
||||
Texture* srcTexture = input->getTexture(textureId);
|
||||
Texture* srcTexture = m_input->getTexture(textureId);
|
||||
int nb_fbos = (downsampling+1)*2;
|
||||
fbos = new FrameBuffer[nb_fbos];
|
||||
Texture* tex = srcTexture;
|
||||
|
Loading…
x
Reference in New Issue
Block a user