100 lines
2.9 KiB
GLSL

// CONSTANTS
const float PI = 3.14159265359;
const float MAX_REFLECTION_LOD = 4.0;
// FUNCTIONS
vec3 fresnelSchlickRoughness(float cosTheta, vec3 F0, float roughness)
{
return F0 + (max(vec3(1.0 - roughness), F0) - F0) * pow(1.0 - cosTheta, 5.0);
}
vec3 ambientGGX(
in vec3 albedoColor,
in float metallic,
in float roughness,
in vec3 N,
in vec3 V,
in mat3 viewToWorld,
in samplerCube irradianceMap,
in samplerCube radianceMap,
in sampler2D lut)
{
float NdotV = max(dot(N, V), 0.0);
vec3 R = reflect(-V, N);
vec3 albedo = pow(albedoColor, vec3(2.2));
// calculate reflectance at normal incidence; if dia-electric (like plastic) use F0
// of 0.04 and if it's a metal, use their albedo color as F0 (metallic workflow)
vec3 F0 = vec3(0.04);
F0 = mix(F0, albedo, metallic);
// ambient lighting (we now use IBL as the ambient term) (fresnelSchlickRoughness function)
vec3 F = fresnelSchlickRoughness(NdotV, F0, roughness);
vec3 kS = F;
vec3 kD = 1.0 - kS;
kD *= 1.0 - metallic;
vec3 irradiance = texture(irradianceMap, viewToWorld * N).rgb;
vec3 diffuse = irradiance * albedo;
// sample both the pre-filter map and the BRDF lut and combine them together as per the Split-Sum approximation to get the IBL specular part.
vec3 prefilteredColor = textureLod(radianceMap, viewToWorld * R, roughness * MAX_REFLECTION_LOD).rgb;
vec2 brdf2 = texture(lut, vec2(NdotV, roughness)).rg;
vec3 specular = prefilteredColor * (F * brdf2.x + brdf2.y);
// combining light
return kD * diffuse + specular;
}
float DistributionGGX(vec3 N, vec3 H, float roughness)
{
float a = roughness*roughness;
float a2 = a*a;
float NdotH = max(dot(N, H), 0.0);
float denom = (NdotH * NdotH * (a2 - 1.0) + 1.0);
denom = PI * denom * denom;
return a2 / denom;
}
float GeometrySchlickGGX(float cosAlpha, float roughness)
{
float r = (roughness + 1.0);
float k = (r*r) / 8.0;
return cosAlpha / (cosAlpha * (1.0 - k) + k);
}
vec3 GGX(
in vec3 albedoColor,
in float metallic,
in float roughness,
in vec3 radiance,
in vec3 N,
in vec3 L,
in vec3 H,
in vec3 V)
{
vec3 albedo = pow(albedoColor, vec3(2.2));
vec3 F0 = mix(vec3(0.04), albedo, metallic);
float NdotL = max(dot(N, L), 0.0);
float NdotV = max(dot(N, V), 0.0);
// Cook-Torrance BRDF
float NDF = DistributionGGX(N, H, roughness);
float G = GeometrySchlickGGX(NdotV, roughness) * GeometrySchlickGGX(NdotL, roughness);
vec3 F = F0 + (1.0 - F0) * pow(1.0 - clamp(dot(H, V), 0.0, 1.0), 5.0);
vec3 nominator = NDF * G * F;
float denominator = 4 * NdotV * NdotL + 0.001; // 0.001 to prevent divide by zero.
vec3 brdf = nominator / denominator;
vec3 kD = 1.0 - F;
kD *= 1.0 - metallic;
return (kD * albedo / PI + brdf) * radiance * NdotL;
}