144 lines
2.6 KiB
C
144 lines
2.6 KiB
C
#include "main.h"
|
|
|
|
#define MAX_POWER 10
|
|
|
|
typedef struct{
|
|
int x;
|
|
int y;
|
|
int type;
|
|
int power;
|
|
int radius;
|
|
} t_epicenter;
|
|
|
|
// variables
|
|
t_epicenter* l_epicenters;
|
|
int size_epicenters;
|
|
int cpt_epicenter = 0;
|
|
int width, height;
|
|
|
|
// functions
|
|
int distance_manhattan(int x1,int y1, int x2, int y2);
|
|
|
|
int absolute(int val);
|
|
|
|
void create_epicenter(int type);
|
|
|
|
int generate(int x, int y);
|
|
|
|
void create_map(t_pixel** map, t_team* teams, int w, int h){
|
|
int i,j,k,l;
|
|
int type;
|
|
|
|
//epicenter variable
|
|
int nb_rock, nb_tree, nb_berries;
|
|
|
|
//spawn variable
|
|
int x_rand, y_rand;
|
|
|
|
width = w;
|
|
height = h;
|
|
|
|
//Epicenters generation
|
|
|
|
// random choice for numbers of epicenters
|
|
nb_rock = rand()%5;
|
|
nb_tree = rand()%5;
|
|
nb_berries = rand()%5;
|
|
|
|
size_epicenters = nb_rock + nb_tree + nb_berries + NB_TEAMS;
|
|
|
|
l_epicenters = malloc(sizeof(t_epicenter)*size_epicenters);
|
|
|
|
//plains generation for each player => after spawn
|
|
for(i=0;i<NB_TEAMS;i++)
|
|
create_epicenter(GRASS);
|
|
|
|
for(i=0;i<nb_rock;i++)
|
|
create_epicenter(ROCK);
|
|
|
|
for(i=0;i<nb_tree;i++)
|
|
create_epicenter(TREE);
|
|
|
|
for(i=0;i<nb_berries;i++)
|
|
create_epicenter(BERRIES);
|
|
|
|
//génération de la carte
|
|
for (i=0;i<width;i++){
|
|
for(j=0;j<height;j++){
|
|
if (i == 0 || j == 0){
|
|
map[i][j].type = BEDROCK;
|
|
}else{
|
|
type=generate(i,j);
|
|
map[i][j].type = type;
|
|
}
|
|
}
|
|
}
|
|
|
|
//génération spawns
|
|
for(k=0;k<NB_TEAMS;k++){
|
|
x_rand= rand()%width;
|
|
y_rand= rand()%height;
|
|
|
|
int error = 1;
|
|
while(error != 0){
|
|
error = 0;
|
|
for (l=0;l<k;l++){
|
|
t_coord sp = teams[l].spawn;
|
|
if (distance_manhattan(x_rand,y_rand,sp.x,sp.y) < 50)
|
|
error = 1;
|
|
}
|
|
}
|
|
teams[k].spawn.x = x_rand;
|
|
teams[k].spawn.y = y_rand;
|
|
}
|
|
}
|
|
|
|
void create_epicenter(int type){
|
|
t_epicenter epicenter;
|
|
|
|
epicenter.x=rand()%width;
|
|
epicenter.y=rand()%height;
|
|
epicenter.type = type;
|
|
epicenter.power = rand()%MAX_POWER;
|
|
epicenter.radius = rand()%(width*height/4);
|
|
|
|
l_epicenters[cpt_epicenter++]=epicenter;
|
|
}
|
|
|
|
int generate(int x, int y){
|
|
int i, ratio, dist_to_epi, sum, val, type;
|
|
int proba[5];
|
|
t_epicenter epi;
|
|
|
|
for(i=0;i<size_epicenters;i++){
|
|
epi = l_epicenters[i];
|
|
dist_to_epi = distance_manhattan(x,y,epi.x, epi.y);
|
|
if (dist_to_epi < epi.radius){
|
|
ratio = (int) ((epi.radius - dist_to_epi) * 100) / epi.radius;
|
|
proba[epi.type-1]=epi.power * ratio;
|
|
}
|
|
}
|
|
|
|
sum=0;
|
|
for (i=0;i<5;i++){
|
|
sum += proba[i];
|
|
}
|
|
val = rand()%sum;
|
|
|
|
int seuil = 0;
|
|
for (i=0;i<5;i++){
|
|
seuil += proba[i];
|
|
if(val < seuil)
|
|
return i+1;
|
|
}
|
|
return GRASS;
|
|
}
|
|
|
|
int distance_manhattan(int x1,int y1, int x2, int y2){
|
|
return absolute(x1-x2) + absolute(y1-y2);
|
|
}
|
|
|
|
int absolute(int val){
|
|
return val > 0 ? val : -val;
|
|
}
|